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Abstract—Fuzzing has demonstrated great success in bug
discovery, and plays a crucial role in software testing today.
Despite the increasing popularity of fuzzing, automated root
cause analysis (RCA) has drawn less attention. One of the
recent advances in RCA is crash-based statistical debugging,
which leverages the behavioral differences in program execu-
tion between crash-triggered and non-crashing inputs. Hence,
obtaining non-crashing behaviors close to the original crash is
crucial but challenging with previous approaches (e.g., fuzzing).
In this paper, we present BENZENE, a practical end-to-end
RCA system that facilitates an automated crash diagnosis.
To this end, we introduce a novel technique, called under-
constrained state mutation, that generates both crashing and
non-crashing behaviors for effective and efficient RCA. We
design and implement the BENZENE prototype, and evaluate
it with 60 vulnerabilities in the wild. Our empirical results
demonstrate that BENZENE not only surpasses in performance
(i.e., root cause ranking), but also achieves superior results in
both speed (4.6 times faster) and memory footprint (31.4 times
less) on average than prior approaches.

1. Introduction

Software fuzz testing (i.e., fuzzing) has demonstrated
great success in the discovery of unknown software bugs [99].
Fuzzing plays a vital role in testing commercial off-the-
shelf software prior to its release. For example, Microsoft
Windows 10 has been hardened using the open-source fuzzing
tool, OneFuzz [112]. Google’s OSS-Fuzz has reported over
8,900 vulnerabilities and 28,000 bugs across 850 open-source
projects [87]. In particular, Mozilla Security has provided
browser-fuzzing resources in the form of open-source [103]–
[105]. The wide adoption of fuzzing has driven an increasing
number of fuzzing studies [71], [84], [102], [116], [126] as
well as the introduction of various fuzzing techniques [70],
[76], [77], [82], [93], [119], [124].

As a product of fuzzing, a crashing input (i.e., a crash)
results in abnormal behavior of a program, which entails a
system crash, abrupt termination, or unwanted execution. A
crash indicates a failure to handle code or data in memory
(e.g., invalid memory access), which is often regarded as
a (exploitable) vulnerability. Hence, a software developer
should be able to provide a patch that fixes vulnerable code
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in a timely manner. However, manual debugging of each
crash is typically a tedious and time-consuming task, even
for highly experienced practitioners. Compared to recent
advances in fuzzing techniques, the study of automated root
cause analysis (RCA) against crashes has drawn relatively
less attention, despite its importance.

Statistical debugging is a widely adopted debugging
technique that employs a statistical approach to tracking
down bugs. AURORA [69] proposes a promising direction
of study with crash-based statistical debugging. Statistical
debugging focuses on investigating the behavioral gaps
between crashing and non-crashing program execution, for
which a collection of varying program behaviors is required.
Thus, given a crashing sample, AURORA leverages fuzzing to
gather multiple samples and then computes a crash condition
(i.e., with predicates) per instruction by tracing the program.
During the tracing, AURORA records every program’s status,
and feeds it to synthesize predicates to infer the root cause
of the crash. Another approach to RCA uses a symbolic
execution [68], [74], [123] technique. Recently, ARCUS [123]
has leveraged both execution flow and memory snapshots
to replay a crash using a symbolic execution engine. While
replaying the crash, it confirms whether any state violates
the pre-defined rule for a certain vulnerability type, such as
a heap overflow or use-after-free.

The approach of AURORA [69] with crash-based sta-
tistical debugging demonstrates satisfactory performance.
However, we identify two limitations in AURORA for scal-
able RCA: 1 fuzzing techniques for bug discovery are
inadequate for efficiently collecting the appropriate non-
crashing behaviors for RCA; and 2 tracing a program to
capture all the memory and register values used in every
exercised instruction can be time-consuming. Furthermore,
ARCUS [123] adopts both a symbolic execution and rule-
based approach, but faces the following barriers: 1 symbolic
execution engines are inherently not scalable, especially with
respect to path explosion and constraint solving; and 2
vulnerability types that are challenging to predefine for
RCA, such as type confusion, null pointer dereference,
and uninitialized variables, can be difficult to analyze. In
summary, our in-depth observation indicates that, in practice,
to successfully reveal a root cause (e.g., even in a complex
structure), an automated RCA system requires 1 a suitable
means for generating non-crashing behaviors that are similar
to the execution paths with a crash and 2 efficient tracing
methods that reduce tracing overheads during RCA.



In this paper, we present BENZENE, a practical end-
to-end RCA system capable of automating a diagnosis
with a crash-inducing input. Our major intuition is that
a (deterministic) crash must satisfy every crash-triggering
condition. That is, the presence of a crash must satisfy a set
of conditions (i.e., predicates) to yield a given crash, which
implies that 1 a crash would not occur if any predicate(s)
in the set has been negated and 2 a non-crashing behavior
contradicts one or more predicates in a crashing condition.
Based on this intuition, we introduce an under-constrained
state mutation scheme for direct state mutations at runtime,
which assists in collecting varying non-crashing behaviors
for RCA. BENZENE adopts a few mutation strategies to
efficiently generate a valid non-crashing behavior that is
close to an initial crash. Next, BENZENE computes a score
for the behavioral similarity using a code coverage map
(often adopted as a metric of the performance of a fuzzing
technique). Finally, BENZENE synthesizes predicates that
describe crash-inducing behavior and produces the rank of
plausible locations for a root cause.

We design and implement a prototype of BENZENE
that consists of three main components: 1 dynamic binary
analysis, 2 program behavior explorations, and 3 RCA.
We evaluate BENZENE using 60 real-world vulnerabilities,
including bugs with complex structures, thus demonstrating
its practicality in terms of both effectiveness and efficiency.
BENZENE can accurately identify the location of the root
cause (with a rank) for most samples (93.3%). A comparison
of the performance of BENZENE to those of the state-of-
the-art approaches highlights the potential of BENZENE’s
for realizing a practical RCA system (i.e., 4.6× in speed
and 31.4× in memory footprints on average). Notably, the
speed of BENZENE achieves 8.1× faster than AURORA [69]
while incurring 9.1× lower memory consumption on av-
erage. Meanwhile, BENZENE exhibits 1.1× faster than
ARCUS [123] even with 53.7× lower memory on average.

The following summarizes our contributions.

• We present BENZENE, an end-to-end practical RCA
system that can diagnose a problem triggered by a
crash-inducing input.

• We introduce a novel technique, under-constrained state
mutation with the aim of generating both crashing
and non-crashing behaviors for the RCA. Besides, our
approach adopts three mutation strategies that signifi-
cantly improve the collection of RCA-needed program
behaviors.

• We design and implement the BENZENE prototype
comprising three components: dynamic binary analysis,
program behavior exploration, and RCA.

• We empirically evaluated BENZENE with 60 vulnerabil-
ities in the wild, demonstrating not only its practicality
but also its superior performance compared to previous
state-of-the-art approaches [69], [123].

We plan to make BENZENE an open-source system 1 to
promote the field of automated RCA in the future.

1. https://github.com/zer0fall/BENZENE

2. Background

This section provides the definition of an RCA problem
and previous approaches [69], [123] to RCA.
Problem Definition. Debugging is part of the software
development life cycle and encompasses the overall activities
that locate and correct an error (i.e., bug). A crucial phase
of software debugging is the RCA (also referred to as fault
localization [118] in the literature) for deducing a site(s)
that triggers a bug, which helps a developer to find the
fault location(s). Although ordinary software testing involves
importing a number of test cases with accessible source code,
one may often encounter an RCA with limited information
(e.g., crash without source). In this work, we mainly focus on
the root cause of a security-relevant bug (i.e., vulnerability)
when a certain crash (i.e., initial crash) occurs. However, this
technique can be applied to a generic RCA (§10).
Crash-based Statistical Debugging. Statistical debugging
is a powerful automated technique for revealing the root
cause by tracing bugs based on the success or failure of a
program. In essence, it generates pre-defined predicates in
a target program and collects useful information such as a
predicate value or a pass-fail result. A scoring system with
these predicates enumerates plausible sites that trigger a bug
(e.g., pinpointing candidate predicates with a rank for their
root cause) such that a practitioner can quickly investigate
them. In particular, crash-based statistical debugging requires
a crash-inducing sample for the RCA, which is useful when
only a program binary and crash are available without source
code. Diagnosing the root cause under such circumstances is
challenging owing to insufficient information (e.g., debugging
symbols) for further investigation.
AURORA. A recent advancement, AURORA [69], demon-
strates a promising solution with a crash-based statistical
debugging technique. First, AURORA generates multiple
crashing and non-crashing samples via fuzzing, based on
a given crash-inducing input. Second, it computes the
crashing condition (i.e., a predicate) for each instruction.
For example, a predicate [0x40010a:rax>3] represents a
condition in which a program crashes when rax holds any
value greater than three at the address of 0x40010a. AURORA
traces a program by collecting all the values in a register
and memory for every instruction. AURORA synthesizes
predicates per instruction and computes the score of each
candidate predicate. To compute the score, AURORA first
calculates θ as defined as in Equation 1 where C and N
denote the number of inputs that trigger a crashing and
a non-crashing behavior, respectively, and their subscript
t represents the case where the prediction by the given
predicate is successful, and f otherwise.

θ̂ =
1

2
×

(
Cf

Cf + Ct
+

Nf

Nf +Nt

)
(1)

Then, AURORA computes a predicate score with 2∗|θ̂−0.5| in
the range of [0,1]. As the score is closer to 1, its correspond-
ing predicate better describes the crashing condition. Finally,
AURORA ranks the predicates of each instruction based on its
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1 int gdImageColorMatch (gdImagePtr im1, gdImagePtr im2) {
2 ...
3 buf = emalloc(0x28 * im2->colorsTotal); // 0x28 size buffer
4 for (x=0; x < im1->sx; x++) {
5 for( y=0; y < im1->sy; y++ ) {
6 color = im2->pixels[y][x]; // color set to 0x80
7 bp = buf + (color * 5); // out-of-bound access
8 (*(bp++))++; // crash
9 ...

Figure 1: Code snippet for CVE-2019-6977. A heap overflow
vulnerability in Line 3 incurs an out-of-bound write due to missing a
boundary check on the user-controlled variable (im2->colorsTotal).
Note that the code has been modified for brevity.

score, followed by reporting root cause candidates with their
rankings. Note that the predicate synthesis metric proposed
by AURORA [69] has been adopted in our study.
ARCUS. ARCUS [123] introduces another state-of-the-art
direction for RCA by leveraging symbolic execution in a
given crash. ARCUS reconstructs a program state on top of
a series of exercised blocks and an initial memory snapshot
and inspects any intermediate state using the pre-defined
rules for each vulnerability type (e.g., heap overflow and
use-after-free). It is noted that ARCUS requires an Intel
PT [89] for recording blocks. Furthermore, in contrast to an
AURORA’s ranking report, ARCUS makes a binary decision
(i.e., whether a vulnerable state has been detected) and
pinpoints the location(s) that induces a bug if detected. As a
final note, ARCUS does not require the disabling of address
space layout randomization (ASLR), enhancing its usability.

3. Motivation and Approaches for RCA

This section demonstrates a motivating example, intro-
duces notations, and outlines challenges and key approaches
take both effectiveness and efficiency into consideration.

3.1. Motivating Example

CVE-2019-6977. Figure 1 presents a code snippet that
induces CVE-2019-6977 [41], a real-world vulnerability in
PHP v7.2.13 (gd_color_match.c). The code contains a heap
overflow vulnerability in gdImageColorMatch() owing to
insufficient memory allocation: e.g., the member variable
im2->colorsTotal is set to 0x1, thus allocating 0x28 bytes
for buf (Line 3). This causes bp (e.g., 0x280) to point to an
out-of-bound address (Line 7) when the color is set to 0x80
(Line 6), resulting in an undesirable crash that attempts to
write data in the unallocated space (Line 8).
RCA with AURORA. AURORA seeks a failure-inducing
location by examining crash-explanatory predicate(s) based
on a collected dataset through fuzzing. In Figure 1, finding
non-crashing inputs that control im2->colorsTotal (Line 3)
is required to infer predicates pertaining to a crash. Note
that a fuzzer (i.e., the AFL’s crash exploration mode) offers
a means of producing such a non-crashing input. Figure 2
presents a successfully mutated non-crashing input; e.g.,
by carefully adjusting the number of imagecolorallocate()

1 <?php
2 $img1 = imagecreatetruecolor(0xfff, 0xfff);
3 $img2 = imagecreate(0xfff, 0xfff);
4 < imagecolorallocate($img2, 0, 0, 0); // crash
5 ---
6 > for($i = 0; $i < 255; $i += 1) {
7 > imagecolorallocate($img2, 0, 0, 0);
8 > } // non-crash
9 imagesetpixel($img2, 0, 0, 0x80);

10 imagecolormatch($img1, $img2);
11 ?>

Figure 2: Input mutation example for CVE-2019-6977. A fuzzer
should be able to generate a non-crashing input from a given crash
(e.g., Line 4 replaced to Lines 6-8) for successful RCA, which
requires a challenging grammar-aware mutation.

call invocations (Lines 6-8 in Figure 2) from a given crashing
input. However, generating such grammar-aware mutations
is almost infeasible [64] within an acceptable time period.
Even with a successful mutation, AURORA suffers from a
significant overhead of collecting all the stored values in
both registers and memory because synthesizing predicates
per (exercised) instruction is a requisite for RCA.
RCA with ARCUS. In contrast to AURORA, ARCUS is a
rules-based RCA tool equipped with a symbolic execution
engine and inspect whether every symbolic state violates pre-
defined rules based on the construction of a crash execution.
However, ARCUS fails to determine the root cause in our
example (Figure 1) because its current rules do not cover
a heap overflow case without hijacking the control flow. In
general, manually registering rules that take every bug case
into account (e.g., heap spraying [80], [110]) is impractical.

3.2. Challenges and Our Approaches

Preliminary Definitions. We assume that the behavior
of a target program (P ) has a distinct execution path (i.e.,
deterministic) with a given input I . We denote a vulnerability
as V in P . Then there may be multiple Is that trigger a crash
because of V . Each crash determines a unique execution
path that results in a program crash (i.e., crashing behavior).
On borrowing symbols from propositional logic, a crash can
be represented by a series of functions (i.e., predicates), each
of which holds either a true or false value.
Crashing Conditions. A crashing condition (C) can be ex-
pressed as a compound predicate that describes the execution
with a crash-triggering input i ∈ I; i.e., Ci = p1∧p2∧· · ·∧pn.
Because a distinct crash-inducing input constructs a unique
crashing condition, we define a common crashing condi-
tion (C∗) by extracting common predicates that can be
discovered across all crashing behaviors (triggered by V ).
Now, k different crashes form a set of crashing conditions
{C1, C2, . . . , Ck} where the number of predicates may
vary depending on the crashing condition. Suppose that
every predicate can be mapped with a unique bit vector
as pi → Bpi

where the ith digit is 1 and all others
are 0s (e.g., p2 = 0102 and p3 = 0012). C with bit
vectors can be expressed as BC = Bp1

|Bp2
| . . . |Bpk

, where
| denotes the bitwise OR operator. We can then obtain
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Figure 3: A high-level idea of our root cause lemma (§3.2). A
common crashing condition (C∗) is derived from the collected
program behaviors (i.e., crashing executions A and B). The root
cause predicate (CR) must be within C∗.

BC∗ = BC1
&BC2

& . . .&BCk
, where & represents the

bitwise AND operator. The number of bits in BCi must
be identical to the number of distinct predicates collected
from all Cis. As an example, the common crashing con-
dition from the following two crashing inputs would be
C1 = p1 ∧ p2 ∧ p3 → BC1 = 11102, C2 = p1 ∧ p3 ∧ p4 →
BC2 = 10112 =⇒ BC∗ = 10102 → C∗ = p1 ∧ p3.
Root Cause. A root cause (CR) can be represented as
an essential (set of) predicate(s) that contributes to a crash.
As an example, for a typical buffer overflow, the missing
range check that represents a predicate “buffer size > 0x400”
would be the root cause. In general, a root cause predicate
incorporates both explicit (e.g., taking branches) and implicit
(e.g., missing range checks) cases.
Root Cause Lemma. Based on the aforementioned nota-
tions, we state the fundamental lemma: CR due to V must
be within C∗. The lemma can be justified as follows: if the
root cause predicate(s) do(es) not exist in C∗, then it implies
that there exists a crashing input (I) that triggers V without
satisfying CR of V . This is a contradiction because we
assume that CR is the root cause to be triggered. Figure 3
depicts a common crashing condition and the root cause
candidates. To obtain C∗, the example utilizes two crash-
triggering inputs from two executions, A and B, and ensure
that CR is present within C∗.
Crux of BENZENE. We designed BENZENE for an RCA
process at a high level with the following two major phases:
P1 extracting common crashing conditions is required, and
P2 the root cause can be derived from those conditions.
Challenges. P1 To achieve the first phase, we adopt
AURORA’s approach to identify C∗ from the difference
in behavior between crashing and non-crashing runs of a
program. However, the main challenge in investigating such
behaviors arises from the rareness of these events because
the root cause often resides in a hardly reaching location.
One possible solution is to use a fuzzer to generate both
(a few) crash-triggering inputs and (a vast number of) non-
crashing inputs. However, the number of useful inputs for
RCA with fuzzing is far from sufficient. To address this
issue, A1 we introduce state mutation to efficiently collect
varying behaviors pertaining to a given crash (Approach
#1). P2 To accomplish the second phase, an efficient means
of pinpointing CR is required for practical RCA systems.
However, it is non-trivial to deal with a large volume of C∗

for RCA. A2 To overcome this challenge, we propose an
approach (Approach #2), wherein the root cause is inferred

PB
colorsTotal

(line 3)
sx

(line 4)
sy

(line 5)
Execution

Path CS
TV p1 TV p2 TV p3

IC 0x1 T 0xfff T 0xfff T 3-4-5-6-7-8 ✓

#1 0x400 F 0xfff T 0xfff T 3-4-5-6-7-8 ✗

#2 0x1 T 0xfff T 0x0 F 3-4-5-9 ✗

#3 0x1 T 0x0 F - - 3-4-9 ✗

#4 0x80 F 0x80 T 0x0 F 3-4-5-9 ✗

#5 0x20 T 0xfff T 0x100 T 3-4-5-6-7-8 ✓

TABLE 1: A demonstration on how to determine the candidate(s)
of root cause predicates. One can choose the first input (e.g.,
contradicting p1) as the best candidate to reveal a root cause
because its execution path (e.g., 3-4-5-6-7-8 with the line numbers
in Figure 1) is the closest to the initial crash’s without crashing (i.e.,
crash-relevant-but-non-crashing input). PB, IC, TV, and CS denote
a program behavior, initial crash, traced value, and crashing status,
respectively. Each predicate represents p1:[colorsTotal < 0x80],
p2:[sx > 0], and p3:[sy > 0].

           ...
  jle  0x555555800bc9
  lea  esi, [rax+rax*4]
  xor  edx, edx      
           ...

int gdImageColorMatch(ptr, ptr){                
                  ...
   buf = emalloc(0x28 * im2->colorsTotal); 
                  ...
}

Program State #1

crash non-crash

Program State #2

RAX: 0x1
RBX: 0x555556332ff0
RCX: 0x0
     ...

RAX: 0xff
RBX: 0x555556332ff0
RCX: 0x0
    ...

Disassembled CodeProgram Source

Figure 4: Example of a state mutation, diverting a program behavior
for CVE-2019-6977. The source line for memory allocation corre-
sponds to one of the disassembled codes, lea esi, [rax+rax*4]
instruction. Our state mutation can directly update the value in
the rax register, 0x1 → 0xff, before fetching lea at runtime. The
mutation facilitates the diversion of a program execution from a
crashing to a non-crashing state (i.e., seamless termination).

based on behavioral similarity.
(Approach #1) A state mutation at runtime can assist in
collecting varying non-crashing behaviors for the RCA.
Discovering an input that induces a crash-related-but-non-
crashing behavior is essential for identifying the common
crashing condition, because it allows one to observe the
behavioral difference that assists in uncovering the root cause
(e.g., #1 in Table 1). A certain non-crashing behavior is
desirable when it contradicts a root cause (i.e., behavioral
difference) but results in a non-crash. However, a naïve
mutation is unlikely to identify a desirable behavior because
of the immense search space. To this end, we introduce
state mutation, a mutation technique tailored to RCA that
mutates a target program state at runtime. The key idea
behind this technique is that part of a crash-inducing input
is eventually stored in a processor register or on process
memory. In this manner, obtaining non-crashing behavior
is possible without considering a complex syntax (i.e.,
grammar). Figure 4 illustrates a part of the execution flow at
gdImageColorMatch() with a given crash. The program state
is captured immediately before executing the instruction
lea esi, [rax+rax*4]. If one could intercept the state,
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Figure 5: The architecture of BENZENE, an end-to-end system for automated root cause analysis (RCA), which comprises three components:
dynamic binary analysis (§5), program behavior exploration (§6), and RCA (§7). We describe the overview of BENZENE in §4.

mutate the value of 0x1 (i.e., im2->colorsTotal; one of
the root-cause-related variables), and continue the execution,
the program would terminate seamlessly without a crash.

(Approach #2) Behavioral similarity between a given
crash and non-crashes helps to quickly deduce a root
cause. Using our state mutation technique, it is possible
to collect abundant crash-related-but-non-crashing behaviors,
identifying C∗. To effectively infer the root cause, we adopt
a behavior-similarity-based approach. The key insight of
this approach is that non-crashing behavior must contradict
one or more predicates under a common crashing condition.
Our approach is based on the fact that, the closer the code
coverage between a given crash and a non-crash, the more
likely it is to reveal the root cause of V by contradicting the
predicate(s) in the crash. For instance, Table 1 lists four non-
crashing behaviors (#1-4; last column), and each behavior
contradicts at least one predicate (i.e., gray cell) in C∗. In this
case, the predicate (p1) contradicted by the first non-crashing
input (#1) is most likely to become the root cause of CVE-
2019-6977 because #1 is the closest behavior to the initial
crash (i.e., IC). We leverage Principal Component Analysis
(PCA) [92] to compute a similarity score for non-crashing
behaviors, as in Manes et al. [100].

Our Approach over ARCUS and AURORA. ARCUS is
based on a rule and symbolic execution engine, but has two
significant limitations: 1 the symbolic execution engine is
not scalable for complex, highly-structured programs, and
2 composing a single rule can be impractical for certain
bug types such as type confusion, owing to custom types
(e.g., structures). Meanwhile, AURORA adopts a statistical
approach by collecting various behaviors pertaining to a given
crash. While this idea is promising, it has two limitations:
1 collecting such behaviors through fuzzing in a reasonable
time may be infeasible, and 2 the tracing overhead is non-
negligible as it requires exhaustive tracing of all behaviors.
Adopting the AURORA’s statistical approach with behavior
differences between crashes and non-crashes, BENZENE is
designed to tackle the above shortcomings with the focus
on practicality. The gist of BENZENE lies in state mutations
for quickly identifying crash-related behaviors, which can be
regarded as fuzzing tailored to RCA. Furthermore, BENZENE
reduces the tracing overheads by selectively tracing behaviors
based on their similarity and mutation strategies.

4. BENZENE Overview

Figure 5 sketches the overview of BENZENE, which
consists of three main components.
Dynamic Binary Analysis. As a preparation component,
BENZENE conducts dynamic binary analysis to extract
essential information for the RCA (§5), including 1 function
boundary identification, 2 data flow graph (DFG) construc-
tion, and 3 crash origin backtracking. BENZENE utilizes
this information to implement various strategies for (efficient)
state mutations. Note that no static analysis is required.
Program Behavior Exploration. BENZENE synthesizes a
crashing condition and determines a root cause by examining
which predicates in the crashing condition are contradicted
by desirable non-crashing behaviors. To effectively obtain
such a behavior dataset, we introduce a novel technique,
called under-constrained state mutation (§6.1), which directly
mutates a program state (e.g., a value in a register or memory)
at runtime. We adopt three mutation strategies to make our
technique practical and robust (§6.2). Moreover, we introduce
a conservative crash triage to gather a minimum set of crashes
relevant to a given bug, which is required for synthesizing
the crashing condition (§6.3).
Root Cause Analysis. In the final phase, BENZENE infers
a set of possible locations (for further investigation) that
trigger a given crash based on non-crashing behaviors. Thus,
BENZENE first constructs a matrix that portrays the edge
coverage of each collected behavior and, then computes a
similarity score between the coverage of an initial crash
and that of a non-crashing behavior (§7.1). Next, BENZENE
synthesizes predicates that describe a crashing condition
based on a non-crashing behavior (§7.2). Finally, BENZENE
ranks all the predicates that contribute to a given crash
using both the synthesis of the crashing conditions and the
similarity score of each non-crashing behavior (§7.3).

5. Dynamic Binary Analysis

BENZENE performs a dynamic binary analysis to provide
crucial information for further RCA.
Function Boundary Identification. BENZENE begins with
a binary analysis by recognizing 1 the location of each
function, and 2 the instructions within. Based on the
execution with a given crashing input, BENZENE dynamically
extracts function information by monitoring a call stack with
instrumented instructions (e.g., a call/ret pair).

5



mov rdi, [rsi-0x20]5

mov rcx, rsi4

mov rax, rdi7

mov rcx, [rax]8test rcx, rcx6

mov [rsi-0x20], rax2mov rsi, [rax]1

Crashed location

mov [rsi-0x20], rcx3

Associated with a crash

(rsi, 1)
(mem, 2) (mem, 3)

(rdi, 5)

(rax, 7)

[0x41414141]

(rsi, 1)

(rcx, 4)

Figure 6: Example of building a data flow graph for backtracking
a crash origin. A square box represents an instruction (i.e., node)
with its identifier, and a line between boxes represents a data flow
(i.e., edge). Note that a gray box depicts a crash-relevant node. A
node may have multiple edges because data in a source operand
can be associated with multiple origins (e.g., inst5).

Data Flow Graph Construction. BENZENE internally
builds a DFG with a given crash for two reasons: 1 to
identify the entry node of a function, and 2 to infer the
values that a certain operand can hold, which assists further
mutations (§6.2). By running a program with an initial
crash, we build a dynamic DFG (G(V,E)) as follows. First,
each instruction (node) is labeled with a unique identifier
for tagging the registers and memory regions. Second, we
represent a data flow (edge) with a tuple of (source, inst#)
because 1 data propagation can be tracked via a register
or memory (i.e., source operand in an instruction), and 2 a
single instruction could be reached from multiple instructions.
Third, for each exercised instruction, we examine which
inst’s identifier is tagged on the source operand, and then,
append the incoming edge (source, inst#) based on the
identifier. Next, we tag the destination operand using the
current instruction’s identifier. Figure 6 illustrates a DFG
example with an instruction (i.e., square box) and data flow
(i.e., line). In the case of inst7, rdi (i.e., source operand) is
tagged by inst5’s identifier (i.e., rdi originates from inst5);
thus, the incoming edge (rdi, 5) is added to inst7. Note that
the source operand [rsi-0x20] at inst5 has three incoming
edges, (rsi, inst1), (mem, inst2), and (mem, inst3), because
data dependencies can be associated with multiple origins.

Crash Origin Backtracking. Based on the DFG, BENZENE
traces backward to obtain the exact origins of a crash site
(e.g., invalid memory access), leveraging a debugger’s reverse
execution [107]. We use this information to extract target
functions for our state mutation. Namely, starting from a
crashing location, BENZENE follows back to the incoming
edges that are relevant to a crash-inducing value. In Figure 6,
suppose that a crash has been triggered at inst8 because
of the invalidity of a dereferencing value (e.g., 0x41414141)
of the rax register. Following relevant data reversely, the
rax value originates from rdi at inst7, and so does rdi
from [rsi-0x20] at inst5. Similary, the operand [rsi-0x20]
at inst5 can be affected by two instructions: inst1 and
inst2. This example entails four instructions (inst[1|2|5|7])
as the origin of a crash. Based on the observation that an
invalid value (0x41414141) arises from inst2, inst3 has been
excluded. A set of instructions associated with the crash
origin is provided at the mutation phase (§6.2).

6. Program Behavior Exploration

This section presents our mutation scheme (§6.1) and
strategy (§6.2) for non-crashing behavior and crash triage
(§6.3) for crashing behavior.

6.1. Under-constrained State Mutation

To obtain crash-related non-crashing behaviors (P1
in §3.2), we adopt an approach that mutates a program state at
runtime. At this point, one may raise the question of ensuring
the validity of the behavior from such a state mutation
because forceful modification of a program’s intermediate
state often renders a subsequent execution invalid (e.g., an
unreachable state). However, in contrast to fuzzing, our
state mutation does not need to reason the validation of
the input, but harnesses the mutation itself to obtain a non-
crashing behavior. In this regard, our mutation technique
is called under-constrained state mutation, which has been
borrowed from under-constrained symbolic execution [109].
Namely, a non-crashing behavior is a (by-)product of an
unsatisfied crashing condition, even in the presence of an
infeasible state, which can aid in seeking the candidate
predicates of the root cause (i.e., crashing condition). To
exemplify, the im1->sx’s mutation from 0xfff to 0x0 in Line
4 in Figure 1 results in a non-crash because it does not hold
one of the predicates in the crashing condition, [im1->sx >
0x0]. Although this mutation leads to an infeasible execution
by guiding an unreachable branch (i.e., escape without a
loop), its behavior is useful for obtaining a predicate for the
RCA. We elaborate on the crashing behaviors’ validity with
under-constrained state mutations in §6.3.
Notation. Let an exercised instruction be i ∈ Ω where Ω
represents all instructions in a certain program. Now we
define a state as Si(R,M) at the very moment of executing
instruction (i), where the current status of the registers and
memory are denoted as R and M, respectively. To describe
a state mutation (T ), we define two attributes: 1 source
type: t ∈ {opr,mem} where opr and mem denote a source
operand or memory to mutate from, and 2 value: v ∈
Zn = {x|x ∈ all representable integers with n bits}. Then,
a state mutation can be formally written as Ti(t, v, v

′) :
Si(R,M) → S′

i(R′,M′) where a state transition is made
with a value (v to v′) of type (t). For example, the state
mutation on i := lea esi, [rax+rax*4] in Figure 4 can
be written as Ti(rax, 0, 255) : Si(R,M) → S′

i(R′,M′).
Note that BENZENE focuses solely on a value mutation in a
source operand because the value in a destination operand
is automatically determined by its sources.
Challenge. Despite the effectiveness of an under-constrained
state mutation in diversifying a program behavior, a naïve
mutation often encounters a state explosion owing to too
many possible cases. For instance, the above Tx(rax, 0, 255)
is hardly reached with a random mutation strategy because
a 64-bit register (rax) could hold 264 − 1 possible values.
Moreover, as a state mutation requires forceful execution
by setting up an arbitrary value in Si(R,M) on the fly, a
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mov rcx, rbx1

mov rax, rcx2

cmp rax, 0x434

λ: {0x0, 0x3030}

λ: {0x0, 0x0} 0x0, 0x3030,
0x43, 0x40, ...

Bag of values

Function-level forking❶

❷ ❸

State mutation

Mutation target

(rcx, 1)

(rax, 2)

Foo():

(rax, 2)

cmp rax, 0x403

Figure 7: Illustration of our mutation strategy for an effective
and efficient under-constrained state mutation. 1 BENZENE adopts
a function-level process forking to narrow down the scope of a
mutation. Besides, BENZENE drastically reduces 2 the number
of target instructions with a DFG (e.g., instruction that refers an
external value), and 3 the number of observed values with a bag
(i.e., BoV; Bag of Values) for guiding further mutation. λ represents
trace values observed in a source operand of each instruction.

subsequent execution would be highly unstable or impractical
(e.g., meaningless crashes). The following section describes
our mutation strategies for efficiency and practicality.

6.2. Mutation Strategy

Mutation at a Glance. At a high level, similar to
LibFuzzer [113] and in-memory fuzzing, we explore the
behaviors of a program at the function level by creating
a new process with fork-ing. Once these target functions
are extracted, we repeat the state mutations with a fixed
number of iterations per function. At each iteration, we
choose a mutation target Si(R,M). When the mutation
target (Si) has been reached, we perform a state mutation
(Ti), modifying the current state of the program accordingly.
After the mutation, we continue the process until termination
and monitor a (non-)crash. Note that mutating the program
state makes it susceptible to an undesirable crash; thus, we
devise strategic mutations.
Function-level Forking. As there are a large number of
instructions in a program, we need to narrow the location
scope for a state mutation. To address this problem, we
adopt the granularity of a function for the mutation process
(e.g., Foo() in Figure 7). To be specific, we extract a list
of functions pertaining to invalid memory access at a crash
site. This can be performed using function information and
crash origins during a dynamic binary analysis (§5). Once
the target functions are identified (e.g., 10 minutes), we
iterate a state mutation for each target function (F ); i.e., 1
choose a state mutation Ti : S → S′ within a target function
(i.e., i ∈ F ), 2 execute an instruction, and 3 monitor a
mutation result (i.e., crash or non-crash). For each iteration,
the process is forked at the entry of a target function.
Mutation Target Selection. For each forked process at
a target function, we must choose a state Si(R,M), as
a mutation candidate. Although we restrict our mutation
scope to the target function, there are still a large number
of instructions within the function. To address this issue, we
narrow the instructions to a selection pool of instructions (i.e.,
i ∈ P, P ⊂ F ) that refers to an external value (coming from

Type Description

geq(op, α) all values in op are greater than or equal to α
leq(op, α) all values in op are less than or equal to α
exist(op, α) α exists in op
strlen_geq(op, α) string length pointed by op is greater than or equal to α
strlen_leq(op, α) string length pointed by op is less than or equal to α

TABLE 2: Predicate types for BENZENE. We adopt the first two
types from AURORA, and introduce three additional types.

outside a function boundary). The intuition behind is that the
behavior of a certain function can be determined by external
values (e.g., arguments or global variables); thus, mutating
them can aid in deriving desirable behaviors. We leverage the
DFG (§5) to identify instructions that use such external values
at the binary level. Considering inst2 in Figure 7 where the
incoming edge of inst2 is (rcx, inst1). The affecting value
(i.e., value in rcx) originates from an external function (e.g.,
caller). As inst2 takes an externally referencing value, we
select Sinst2(R,M) as a mutation target in P . By contrast,
inst3 whose data flow comes from inst2 can be excluded
from P because rax is dependent on rcx. It is noteworthy
that our approach is agnostic to a calling convention (i.e., a
scheme for how a subroutine takes an argument from a caller,
such as stdcall, cdecl, or fastcall) because we inspect a
value if it comes from either a register or memory with the
boundary of a function.

Bag of Values. An under-constrained state mutation is prone
to leading to an undesirably invalid crash due to its inherent
instability. Our careful observation heuristically reveals two
major cases that frequently trigger such an invalid crash:
1 mutating a pointer that refers to a user-defined data type

(e.g., structure) and 2 mutating a constrained variable with
a distinct range (e.g., enum type, array index). To handle
both cases, we maintain a bag of values (BoV), λ, to guide
further mutations. The bag is collected internally with a
set of observed values (from a source in accordance with
an instruction) per Si(R,M). Thus, a mutation candidate
(v′) can be selected from (i.e., v′ ∈ λ) for Ti(t, v, v

′). The
intuition behind this strategy is that a value that shares the
same data flow may have an identical data type with a high
probability [128]. This aids in observing acceptable behavior
without worrying about complicated type inferences on a
binary. However, it provides an opportunity to cover a large
mutation space within an acceptable time constraint. We
cultivate a BoV per S from the stored values of an exercised
instruction by backtracking the incoming edges (i.e., up to
the point with a single source edge in DFG) in a DFG (e.g.,
3 in Figure 7). A special value is of interest for the BoV,
which can enter a branch (e.g., 0x40 from cmp rax, 0x40),
enabling us to efficiently collect non-crashing behaviors such
as prior works in fuzzing [76], [111], [124]. In case that BoV
exceeds a pre-defined size (e.g., 1024), BENZENE conducts
random sampling. With BoV, BENZENE generates random
values (RVs), probabilistically choosing a value from either
BoVs or RVs (e.g., 50%) for each mutation cycle. Note
that we disabled ASLR because the memory layout for each
mutation must be consistent during our mutation.
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Crash-Triggering Predicate Synthesis (§7.2)
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Figure 8: Root cause analysis overview in BENZENE. Each program trace contains an edge coverage map, forming a matrix of all program
behaviors. Next, we apply PCA to reduce a dimension of the matrix ( 1 ), followed by computing a similarity score ( 2 ) between a
non-crashing and a crash-inducing execution. To obtain a crashing condition with multiple predicates, we group the traces ( 3 ) and use a
predicate synthesis approach proposed by AURORA [69] ( 4 ). By inspecting concrete values from traces (with non-crashing behaviors), we
identify a contradictory predicate against the condition ( 5 ). BENZENE elects a single representative predicate ( 6 ) from all contradictory
predicates for each non-crashing behavior (i.e., earlier execution is more probable to be a root cause). Finally, we rank all representative
predicates based on their similarity scores ( 7 ). C and NC denote traces for crashing and non-crashing behaviors, respectively.

6.3. Crash Triage

Although our under-constrained state mutation technique
is mainly focused on collecting non-crashing behaviors, it
is necessary to collect a minimum set of crashing behaviors
because we utilize a means of AURORA’s predicate synthesis
(Equation 1). However, in contrast to a non-crashing behavior,
the validity of which can be confirmed, it is difficult to
determine whether a crash caused by mutating a state has
been associated with an original crash. For example, if a
target that originally represents a particular pointer is mutated
to an invalid integer (e.g., 0x1), a crash (irrelevant to a bug)
would be pointless. Such invalid crashes significantly hinder
the synthesis of accurate crashing conditions by introducing
substantial noise into Equation 1. Based on a previous reverse
execution triage technique [78], [79], [121], we classify a
certain crash into the same category if it follows identical
data flows. However, constructing a DFG for every crashing
execution is costly, with a significant overhead. To tackle this
problem, we devise a crash triage technique that distinguishes
an execution with a given crash (i.e., root cause) from that
with an invalid state mutation while incurring a low overhead.
The technique entails the following two conditions: 1 a
crashing site (i.e., address) triggered by a state mutation is
identical to that of an initial crash, and 2 an instruction
associated with a crash origin is exercised. If a crash with a
state mutation satisfies the above conditions, we record this
behavior; otherwise, we discard it. Apparently, our method
may result in the synthesis of an over-approximated crashing
condition by considering only a subset of all possible crashes
due to V ; however, CR would still be preserved with the
subset. In other words, CR must satisfy (a subset of) crashes
that non-crashes must not.

7. Root Cause Analysis

BENZENE extracts a common crashing condition from
the collected behaviors and derives a root cause by ranking
the predicates corresponding to each non-crashing behavior
(i.e., contradicted predicates). This section describes the RCA
component of BENZENE (Figure 8).

7.1. PCA-based Similarity Metric

Edge Coverage Matrix. Similar to AFL [125], we utilize
an edge coverage map that is widely adopted to measure
the performance of a fuzzing technique. BENZENE records
edge coverage information (i.e., the occurrence of transitions
between basic blocks) per collected behavior on a 64 KB-
size map. The map keeps being updated along with an
iterative mutation. With n different behaviors, we can obtain
an edge coverage matrix of n (row) × 64 KB (column)
in size. One notable side effect is that the coverage map
of an execution with a non-crashing behavior would keep
updated until the termination of a program, whereas that
of an execution with a crash would not. This inevitably
brings about a significant discrepancy between the coverage
maps for comparison, which hinders our major objective of
finding non-crashing behaviors similar to an original crash.
To mitigate this issue, we harness a watchpoint that informs
us when to stop updating the coverage map. To be precise,
the watchpoint monitors one of the crash origins (§6.3); a
coverage map update would be suspended for a subsequent
execution once a crash-triggered instruction (from a given
crash) has been exercised.
PCA-based Similarity. To reduce the dimensions of the
edge coverage matrix, we apply PCA [92] to obtain a
compact coverage map for each collected behavior ( 1
in Figure 8). Then, we compute the Euclidean distance (i.e.,
L2 norm) between the coverage of a non-crashing behavior
and the initial crash. BENZENE determines how close an
execution with a certain non-crashing behavior is to that
with the original crash via a similarity score ( 2 in Figure 8):
i.e., the smaller distance, the closer score. This similarity
scoring allows for prioritizing all the collected non-crashing
behaviors in proximity to an initial crashing execution.

7.2. Crash-triggering Predicate Synthesis

Selective Tracing. Mutating a target function at each fuzzing
cycle results in either a crashing or non-crashing behavior.
However, tracing the entire program behavior with such
mutations is computationally expensive [69]. Furthermore,
because the traces prior to a state mutation are always the
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same, they cannot be used to the AURORA metric Equation 1.
To address both the tracing overheads and unchanging traces
owing to discrepant mutation points, we introduce the concept
of a tracing group that consists of behaviors obtained by
state mutations with the same target function. Behaviors that
belong to the same tracing group can be utilized to calculate
Equation 1 because they share an adjacent mutation point
(i.e., target function). We then prioritize the tracing groups
with a similarity metric. Specifically, BENZENE considers
the Top-N non-crashing (program) behaviors (e.g., N = 50),
and selectively traces the tracing group whose non-crashing
behaviors are shown in the Top-N instead of performing
exhaustive tracing ( 3 in Figure 8). As our RCA process
employs the contradictory predicate for each non-crashing
behavior (A2 in §3.2), we only need to consider the tracing
groups that incorporate the non-crashing behaviors in Top-N .
Predicate Synthesis. Based on the results obtained from
selective tracing (i.e., various program behaviors per tracing
group), BENZENE performs predicate synthesis as proposed
by AURORA [69]. The objective of predicate synthesis is to
identify a yet unknown crashing condition (i.e., a compound
predicate) using traces from each exercised instruction ( 4
in Figure 8). Table 2 enumerates the predicate types for
BENZENE. Unlike AURORA, we exclude the two predicate
types related to control-flow and flag predicate and introduce
three new predicate types, namely, exist, strlen_geq and
strlen_leq. As discussed in §3.2, BENZENE can derive a
common crash condition by extracting common predicates
from all crash-triggering behaviors. It is noteworthy men-
tioning that our approach can handle a missing condition
because a synthesis is based on the behavioral differences. For
example, BENZENE can synthesize p1 (Table 1) with the ob-
servation of colorsTotal despite the check on colorsTotal
has been missing (Figure 1).

7.3. Report Generation

Root Cause Inference. At this point, we extract a common
crash condition (e.g., the 12 circles in Figure 3). For each non-
crashing execution, it is necessary to discover a predicate
contradictory to the crashing condition ( 5 in Figure 8).
For example, the three predicates outside of Execution A
in Figure 3 are a set of contradictory predicates. We choose a
single representative predicate for each non-crashing behavior
by inspecting the order of the exercised instructions ( 6
in Figure 8). The intuition behind this is that an early-
exercised instruction is more likely to become a root cause
because its subsequent behaviors are more likely to propagate
a bug (e.g., crash).
Root Cause Ranking. Now, a representative predicate
is selected from all the contradictory predicates per non-
crashing behavior. In the final phase of RCA, BENZENE sorts
out all representative predicates according to similarity scores
(between crashing and non-crashing behaviors) from §7.1
( 7 in Figure 8). Next, we rank the representative predicates
based on the location of the possible root cause. Finally,

BENZENE produces a ranking report for users. Note that we
only consider ranks up to 50, as in AURORA [69].

8. Implementation

We implement the prototype of BENZENE with three
components on x64. In summary, BENZENE consists of 13K
line of C/C++ and Python.
Dynamic Binary Analysis. For the dynamic DFG construc-
tion, we utilize the enhanced libdft [76], [94], which is a
taint analysis library based on Intel’s PIN [98]. To obtain a
function boundary, we implement a built-in callstack monitor
for BENZENE, which instruments pairs of call and ret with
PIN. Additionally, we leverage the Mozilla RR’s reverse
execution feature [107] to traverse back to the origin of the
data flow from a crashed site (i.e., invalid memory access).
Program Behavior Exploration. We build the BENZENE
mutation engine using DynamoRIO [72], a dynamic binary
instrumentation (DBI) framework, for our under-constrained
state mutation. Note that we harness DynamoRIO because
of its speed (e.g., slower) and stability (e.g., failure to
catch a segmentation fault when the fork is called) of PIN.
The mutation engine incorporates the feature of tracing
a program because it holds a common code base. We
implement a mutation server for efficient management of
mutation processes such as monitoring and control. We use
the SQLite3 database [62] to store program traces including
register and memory values, during execution.
Root Cause Analysis. The RCA component for computing
coverage similarity and predicate synthesis is written in
Python. We adopt sklearn [61] for computing PCA [92].
User-configurable Mutation Parameters. BENZENE allows
one to configure the following parameters: time to discover
target functions, the number of state mutations per function,
and BoV size where BENZENE pre-define them as 10
minutes, 10, and 1,024, respectively.

9. Evaluation

We evaluate BENZENE using Ubuntu 20.04 equipped
with Intel(R) Xeon(R) Silver 4210 (20 cores at 2.20 GHz)
and 128 GB RAM. As ARCUS’s tracing requires Intel-PT
support, we ran the evaluation in a different environment:
Ubuntu 20.04 with Intel(R) Core(TM) i7-8700 and 64 GB
RAM. The resource consumption during ARCUS’s tracing
is negligible. We conduct all other experiments, including
ARCUS’s analyses, in the same environment. Finally, we
disable the ASLR because BENZENE requires that RCA
be performed in a deterministic environment. We assess
BENZENE with the following three research questions.
• RQ 1: How well can BENZENE identify the root cause of

a crash in a real-world program that supports both complex
and highly structured inputs, and various bug types? (§9.2)

• RQ 2: How closely can BENZENE predict a root cause (i.e.,
predicate ranking) compared to an actual patch? (§9.3)

• RQ 3: How efficient is BENZENE in RCA? (§9.4)
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9.1. Dataset and Experimental Setup

Dataset. We choose 60 vulnerabilities from real-world
applications that contain 11 bug types: stack overflow, heap
overflow, integer overflow, use after free, double free, type
confusion, uninitialized variable, null dereference, format
string, global overflow, and division by zero. To be precise,
we employ 21 solid samples (i.e., PoCs; proof-of-concepts)
provided by AURORA [69], and another 22 samples from
ARCUS [123] for direct comparison. We exclude a vulner-
ability that requires a multi-threading or multiprocessing
environment because BENZENE supports RCA on a single
CPU core. To highlight the performance of BENZENE with
various complex programs, we choose 17 additional samples
from real-world projects including PDF, multimedia, database
engine, interpreters, and libraries. We have listed all the
sample information in Table 5 of the Appendix including
the CVE or Issue number, bug type, and total number of
instructions to estimate the RCA complexity of each case.
Evaluation with AURORA. We choose 17 samples (01−17)
from BENZENE, 19 samples from AURORA (18−27,
29−35, 37−38), 10 samples from ARCUS (39, 41, 42, 44,
49, 50, 55−58), evaluating 46 samples in total. We exclude
12 samples that cannot be processed by AURORA, such as
those requiring unsupported fuzzing methods that handle
argument strings or environment variables. Furthermore, 28
and 36 are also excluded because AFL was unable to process
those cases properly. Because AURORA is dependent on
AFL 2.52b [125], we build fuzzing-target binaries (from
AURORA) using afl-gcc. It should be noted that when any
sample requires a sanitizer to yield a crash, we use a specific
sanitizer module such as an Address SANitizer (ASAN) or
Memory SANitizer (MSAN).
Evaluation with ARCUS. We choose 4 samples
from BENZENE (12−14, 16), 8 samples from AURORA
(31−38), 22 samples from ARCUS (39−60), evaluating 34
samples in total. Note that ARCUS cannot run 26 samples
because 1 it requires an exploitation that involves with a
control flow hijacking (e.g., stack overflow, heap overflow),
and 2 certain bug types (e.g., type confusion) are missing
in a pre-defined rule.
Evaluation Criteria. In our evaluation, we mainly compare
BENZENE with AURORA [69] and ARCUS [123]. For the
AURORA evaluation, we run fuzzing on each sample for an
hour. If the root cause for the given sample was not found
in a report, we perform fuzzing for another 5 hours (i.e.,
6 hours in total). For the ARCUS evaluation, we set up a
20-hour timeout because ARCUS requires sufficient time for
specific samples (Figure 9). To identify the root cause of a
given crashing input, both BENZENE and AURORA generate
a report that includes an inference of a buggy location with
a predicate. Both approaches predict a list of predicates with
ranks (i.e., root cause candidates). Hence, we regard a root
cause predicate within the 50th rank as a success, and oth-
erwise, a failure. By contrast, ARCUS produces a (possible)
buggy location directly with a binary judgment of “Matched”
or “Not-matched”. Therefore, a ranking comparison between

BENZENE and ARCUS is infeasible.
Comparison Methodology. For a fair comparison of the
RCA results, we consider a patch for each bug as the ground
truth. Our success criteria for the RCA is satisfied if any
predicate within the ranked list correctly identifies the exact
location (e.g., a variable, branch, or statement) patched by a
developer. However, multiple repairs that are semantically
equivalent can exist for a given bug. Therefore, we manually
inspect the root cause predicate by verifying that it points to
the patched location at the instruction level. As mentioned
in [69], we assume the RCA is successful for BENZENE and
AURORA when the root cause is located in the result report
within the 50th rank.

9.2. Effectiveness of BENZENE

Summary. Table 3 summarizes the effectiveness of
BENZENE compared to AURORA and ARCUS. ∆Root counts
the number of exercised instructions between the location
of the root cause and that of a crash. Interested readers
may refer to the “Total” number of all instructions to reach
that crash in Table 5 of the Appendix, which estimates
an approximate complexity of each RCA process. The
efficacy of our BoV technique is evidenced in Table 3. The
samples with ✱ indicate the contributions of the BoV in
discovering desirable behaviors during a mutation process:
eight vulnerabilities among the 60 samples, and their RCAs
were unsuccessful otherwise. For example, 08 reveals that a
valid pointer (e.g., 0x7ffff6e9ec18) is required to discover a
meaningful input during fuzzing. Generating a valid pointer
from purely random mutations is not viable without a
BoV. Interestingly, BENZENE demonstrates effectiveness
regardless of the complexity of a program (e.g., an input
that follows a complex structure) or the bug type of the
crash-inducing input, which highlights the strength of our
state mutation approach. Interested readers refer to our case
studies in Appendix A.4.
Comparison with AURORA. With AURORA, BENZENE
reveals root cause locations with a success rate of 95.6%
(44 out of 46 cases), whereas AURORA has a success rate of
63.0% (29 cases). AURORA has 17 RCA-failing cases with
seven different bug types. We reveal several primary factors
that hinder AURORA’s RCA including: 1 fuzzing failure (4
cases) 2 insufficient collection of non-crashing behaviors
(12 cases), and 3 unsupportive predicate type (1 case). We
provide more information in Appendix A.1.
Comparison with ARCUS. With ARCUS, BENZENE reveals
root cause locations with a success rate of 94.1% (32 out of
34 cases), whereas ARCUS has a success rate of 35.2% (12
cases). BENZENE outperforms ARCUS in terms of effective-
ness and applicability. We identify several primary factors
that impede ARCUS’s RCA including: 1 symbolic execution
failure, 2 inconsistent executions between a symbolic engine
and tracer, 3 constraint-solving failure, and 4 inadequate
rules to describe a bug type. Further information is provided
in Appendix A.2.
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✓: Root Cause Found, ✗: Root Cause Not Found, ✱: Bag of Values Contributed, ⇏: Unable to Proceed, ⊘: Out of Scope

Target (BoV) Sanitizer ∆Root (%) RCA Target (BoV) Sanitizer ∆Root (%) RCA

BEN AUR ARC M‡ BEN AUR ARC M‡

01 PHP-8865 [39] - 3,325 (<0.1%) 1 ✗ ⊘ ✓ 31 mruby-10199 [30] ASAN 112,609 (0.7%) 5 25 ✗ ✓
02 PHP-6977 [41] ASAN 132 (<0.1%) 1 ✗ ⊘ ✓ 32 Lua-6706 (✱) [21] - 147 (<0.1%) 1 12 ⇏ ✓
03 mruby-0525 (✱) [26] - - 2 ✗ ⊘ ✗ 33 nasm-8343 [32] - 457,901 (47.5%) 2 2 ⇏ ✓
04 Poppler-12293 [45] - 1,287,909 (<0.1%) 9 ✗ ⊘ ✓ 34 Sleuthkit [51] - 483 (<0.1%) 1 5 ✗ ✓
05 SoX-11358 [52] ASAN 79,470 (11.6%) 40 ✗ ⊘ ✓ 35 libzip-12858 [20] - 46,218 (13.0%) 9 1 ⇏ ✓
06 TinyCC-20375 [58] - 57 (<0.1%) 1 ✗ ⊘ - 36 Python-5636 [47] - 828,077 (0.8%) 5 ⊘ ✗ ✓
07 mruby-46020 (✱) [25] - 7,249 (0.3%) 16 ✗ ⊘ ✓ 37 bash [6] - 75,418 (5.3%) 2 5 ⇏ ✓
08 PHP-7226 (✱) [42] - 5,134 (<0.1%) 1 ✗ ⊘ ✓ 38 mruby-10191 [24] - 3,251 (<0.1%) 3 35 ✗ ✓
09 PHP-0273 (✱) [43] - 266 (<0.1%) 2 ✗ ⊘ ✓ 39 libpng-0597 [18] - 4,471 (1.7%) 2 3 ✓ ✓
10 libical-11706 [16] - 25,028 (0.6%) 19 ✗ ⊘ ✓ 40 jpegtoavi-1279 [13] - 125,152 (37.6%) 1 ⊘ ✓ -
11 SoX-8356 [53] - 4,194,431 (<0.1%) 2 ✗ ⊘ - 41 o3read-1288 (✱) [35] - 10,859 (4.2%) 1 1 ✓ ✗
12 mruby-181321 [29] - 2,578 (<0.1%) 11 29 ✗ ✓ 42 autotrace-9167 [3] ASAN 7,507 (0.6%) 5 (24) ✗ -
13 PHP-2386 [40] - 736 (<0.1%) 3 ✗ ✗ ✓ 43 Redis-12326 [50] - 8,514 (0.7%) 1 ⊘ ⇏ ✓
14 Poppler-7310 [46] ASAN 0 (0.0%) 2 8 ✗ ✓ 44 ftp-15705 [9] - 19,094 (13.1%) 3 11 ⇏ -
15 SQLite-16168 [54] - 15,526 (1.1%) 6 ✗ ⊘ ✓ 45 gif2png-5018 [8] - 76,428 (24.7%) 1 ⊘ ✓ ✓
16 SQLite-13434 [55] - 79,416 (5.8%) 2 10 ⇏ ✓ 46 dmitry-7938 [7] - 56,330 (10.4%) 1 ⊘ ⇏ -
17 libbfd-8393 [14] ASAN 7 (<0.1%) 1 19 ⊘ ✓ 47 ntpq-12327 [34] - 349,775 (29.2%) 1 ⊘ ✓ ✓
18 readelf-9077 [49] ASAN 917 (0.1%) 2 1 ⊘ ✓ 48 libiec-18957 [17] - 167 (<0.1%) 1 ⊘ ✓ ✓
19 objdump-9746 [36] ASAN 1,778,797 (27.7%) 3 3 ⊘ ✓ 49 pdf-re-14267 (✱) [37] - 181,576 (9.6%) 2 1 ⇏ ✓
20 tcpdump-16808 [57] ASAN 5,341 (0.5%) 2 3 ⊘ ✓ 50 abc2mtex-1257 [2] - 28,688 (10.7%) 1 ✗ ✓ ✓
21 perl-17384 [38] ASAN 30,139 (2.3%) 9 36 ⊘ ✓ 51 abc2mtex-47254 [1] - 2,944 (1.3%) 1 ⊘ ✓ ✓
22 patch-54558 [10] ASAN 18,955 (6.0%) 4 3 ⊘ ✓ 52 MiniFtp-46807 [22] - 778 (0.3%) 1 ⊘ ✓ -
23 mruby-12248 [23] ASAN 1,249 (<0.1%) 6 1 ⊘ ✓ 53 GM-11403 [12] ASAN 0 (0.0%) ✗ ⊘ ⇏ ✗
24 nasm-16517 [31] - 471,868 (49.4%) 1 15 ⊘ ✓ 54 GM-14103 [11] ASAN 70,009 (0.9%) ✗ ⊘ ⇏ ✗
25 mruby-185041 [27] - 1,322 (<0.1%) ✗ 29 ⊘ ✗ 55 autotrace-9182 [5] - 1,512,761 (0.8%) 1 (4) ⇏ -
26 Python-116286 [48] - 1,108 (<0.1%) ✗ ✗ ⊘ ✗ 56 libtiff-2025 [19] - 61 (<0.1%) 3 3 ⇏ ✓
27 mruby-3947 [28] MSAN 0 (0.0%) 8 14 ⊘ ✓ 57 libexif-2645 [15] - 400 (0.1%) 1 7 ⇏ ✓
28 PHP-11038 [44] MSAN 1,766,918 (15.1%) 8 ⊘ ⊘ ✓ 58 autotrace-9186 [4] - 794 (<0.1%) 1 (16) ✓ -
29 Xpdf (✱) [60] ASAN 0 (0.0%) 1 ✗ ⊘ ✓ 59 typespeed-0105 [59] - 752 (0.2%) 1 ⊘ ✓ ✓
30 nm-21670 [33] ASAN 0 (0.0%) 2 ✗ ⊘ ✓ 60 sudo-0809 [56] - 339,050 (33.7%) 1 ⊘ ✓ ✓

TABLE 3: Comparison of RCA results between BENZENE (BEN), AURORA (AUR), and ARCUS (ARC). ∆Root denotes a distance with
the number of exercised instructions between a root cause and a crashing point, which represents the complexity of an RCA task. We
compare a root cause predicate of BENZENE with that of AURORA (ranking) and ARCUS (presence). The symbols in the table include:
[✓] when a root cause has been successfully discovered, [✗] when no root cause has been found, [✱] when the BoV contributes to RCA,
[⇏] when an RCA is unable to proceed, and [⊘] when a sample is out of scope. M‡ denotes whether a root cause reported by BENZENE
is aligned with an actual patch. In case of no available patch, we resort to perform a manual analysis. Note that the AURORA’s rank with
a parenthesis indicates the case for which we adjust its threshold (e.g., T : 0.9 → 0.5) to have a predicate appeared in a report.

BENZENE Failure Analysis. We investigate the following
four cases in which BENZENE fails to complete the RCA: 25,
26, 53, and 54. The main reason is unsuccessful (under-
constrained) state mutations that trigger non-crashes like
mutating multiple locations simultaneously (§10). By con-
trast, AURORA accomplishes an RCA for 25 by discovering
desirable behaviors using a fuzzer (i.e., AFL).

9.3. Correctness of BENZENE

RCA Report. BENZENE generates a summary report that
contains a predicate-ranking based on the likelihood of a
root cause such that a developer can manually review them.
In the majority of cases, BENZENE outperforms AURORA
in precisely predicting the root cause locations.
Comparison with AURORA. We evaluate 28 cases success-
ful for both BENZENE and AURORA by inspecting how a
predicted root cause (i.e., highly ranked predicate) is close to
a developer-provided patch. As listed in Table 3, BENZENE
and AURORA report a rank per sample with an average of
3.32 and 10.42, respectively (the lower, the better). Notably,
BENZENE demonstrates better rankings for 19 samples, the

same for 4 samples, and marginal differences for 5 samples.
For 19 cases, our finding shows that the AURORA’s statistical
ranking approach suffers from the false positive from a bug-
unrelated predicate (e.g., memory allocators). The five cases
where AURORA beats BENZENE (e.g., 18, 22, 23, 35, 49)
are because there are non-crashing behaviors that are closer
to an initial crash than desirable behaviors for RCA. Note that
we elaborate on the discrepancies on a root cause predicate
between BENZENE and AURORA in Appendix A.3.

9.4. Efficiency of BENZENE

Summary. To demonstrate the efficiency of BENZENE, we
measure the elapsed time required for the entire process (i.e.,
fuzzing, tracing, and RCA) and the memory footprint for
identifying the root cause. Figure 9 shows that BENZENE
is much faster than AURORA and ARCUS in most cases.
Overall, BENZENE is 8.1× and 1.1× faster with up to 9.1×
and 53.7× less memory consumption in the RCA phase than
AURORA and ARCUS, respectively. Table 4 summarizes a
breakdown of the duration to complete an RCA between
approaches. As shown, BENZENE surpasses AURORA and
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Figure 9: Comparison of performance overheads and memory footprints between BENZENE, AURORA and ARCUS in a log scale. For
AURORA, BENZENE clearly demonstrates better performance in fuzzing (10.0× faster), which dominates the whole processing time.
BENZENE uses only one-tenth of memory footprints compared to AURORA. On the other hand, BENZENE outperforms ARCUS with 1.1×
faster in speed, but 53.7× lower memory footprints. For a memory comparison, we measure the overheads for the RCA phase alone
owing to the distinctive structures of each approach. The five cases (28, 43, 46, 53, 54) are deliberately excluded because AURORA and
ARCUS could not proceed. The missing elapsed time of the five samples (45, 48, 51, 59, 60) are < 5 minutes for BENZENE and ARCUS.

System Time(sec) Mem(MB)Pre+Mutation Tracing RCA Total
BENZENE 1,054 397 116 1,567 1,839
AURORA 10,643 1,621 497 12,762 16,858
Difference 10.0× 4.0× 4.2× 8.1× 9.1×
BENZENE 549 143 17 710 444
ARCUS - - 845 845 23,858
Difference - - - 1.1× 53.7×

TABLE 4: Comparison of performance overheads with a phase
breakdown: BENZENE vs. AURORA (46 cases) and BENZENE vs.
ARCUS (14 cases) on average. Compared to AURORA, BENZENE
clearly demonstrates its efficiency in fuzzing (8.1× faster), tracing,
and RCA while reducing memory footprints (9.1× less). We exclude
ARCUS’s five failure cases (> 20 hours) for a fair comparison.

ARCUS in both speed and resource consumption by a large
margin, well demonstrating the efficiency of BENZENE.
Comparison with AURORA. The mutation process dom-
inates the entire processing time, wherein BENZENE is
10.0× faster than AURORA on average. Additionally, the
significant gap comes from tracing (i.e., around 4.0× faster).
In addition to the speed, BENZENE demonstrates the benefit
of a memory footprint by consuming merely one-nineth of
AURORA’s (i.e., 1.8 GB vs. 16.1 GB on average). Meanwhile,
we investigate 6 exceptions: 05, 19, 20, 30, 34, and 39
where BENZENE consumes a larger memory footprint than
AURORA. For 05, 19, 20, and 30, it mainly arises from the
property of an ASAN-enabled executable, which inevitably
requires heavy tracing due to added instructions during
binary instrumentation. In the case of 34 and 39, the exists
predicate type in BENZENE introduces an additional overhead
as it collects all unique values in a certain operand up to a
pre-defined threshold (e.g., 1024).
Comparison with ARCUS. Since ARCUS does not have the
mutation process and its tracing takes a negligible amount of
time; we only consider an RCA phase for memory overheads.
For a fair comparison, we consider 19 cases, excluding 15

cases that ARCUS failed to proceed (⇏ in Table 3 and 13).
For the five highly-structured cases (12, 14, 31, 36, and 38),
ARCUS could not finish its analysis within the 20-hour time-
limit. Based on an in-depth investigation, we confirm that
the main reason arises from the complexity (i.e., a massive
number of constraints) that a symbolic execution engine
populates, resulting in a huge overhead. Other than such
cases, the average processing time for the RCA on BENZENE
and ARCUS is comparable (i.e., BENZENE is 1.1× faster than
ARCUS). However, ARCUS exhibits a memory consumption
around 53.7× more than BENZENE. Our investigation reveals
that a massive memory requirement mainly comes from the
ARCUS’s RCA module for heap and stack overflow analyses.

10. Discussion and Limitations

Unsupported Bug Types. The current implementation of
BENZENE lacks support for certain types of bugs that occur
when a program returns a non-deterministic result for each
run. This is because BENZENE relies on observing crashes,
which reliably extracts predicates for RCA. For example, a
multi-threaded executable may or may not crash because
of a concurrency bug. In general, detecting bugs from the
non-deterministic behavior of a program remains an open
challenge for modern fuzzing systems [75]. Although this
issue is orthogonal to RCA, we believe that a deterministic
mutation approach (e.g., thread-aware fuzzing) could be a
promising solution, which we plan to investigate in our future
work. Lastly, while BENZENE focuses primarily on security-
related bugs, it has the potential to detect other types of bugs
by observing behavioral differences.
Non-deterministic Nature of Mutation. BENZENE utilizes
a mutation technique that incorporates randomness during
the behavior exploration phase. As a result, even with the
same crashing execution, the technique may produce slightly
deviating results owing to the non-deterministic nature of
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the mutations. This indicates that the ranking of the RCA
may vary slightly for each run.
Predicate Types and Synthesis. Despite collecting a range
of behaviors through mutations, BENZENE may not gain
sufficient information for predicate synthesis. Additionally,
the current set of predicate types in BENZENE may not
adequately capture the complexity of a root cause.
Result Interpretation without Source Code. BENZENE
offers a binary-only mode for RCA, which enables analysts
(e.g., security practitioners, vulnerability analysts) without
access to the source code to diagnose problems. However,
interpreting the BENZENE report may be challenging without
the source code (i.e., ground truth), and the report may not
be entirely convincing. We recommend that BENZENE users
leverage a decompiler, such as IDA [88] or Ghidra [63], to
gain a more comprehensive understanding of the report.
Bug that Spans Multiple Locations. When dealing with
a single bug that requires multiple predicates, BENZENE’s
performance may be restricted. This is particularly true in
cases wherein fixing a complex or structural issue involves
modifying multiple locations or an entire function. In such
cases, changing a specific predicate may not generate a
non-crashing sample because a single predicate cannot fully
capture the root cause condition.
Dataset Representativeness. Our dataset is meticulously
curated to include a diverse range of vulnerability types, such
as a stack overflow, heap overflow, null dereference, type
confusion, integer overflow, double free, etc. Furthermore,
we emphasize that our experiments encompass all target
samples from the two previous approaches (ARCUS [123]
and AURORA [69]) to ensure a fair comparison.
Future Directions. To improve BENZENE, we suggest
research directions of extracting a function and developing
an advanced mutation. First, the current design of BENZENE
relies on recognizing target functions based on the invalid
memory access at a crashing site, which suffers from
considerable performance overheads. One method to improve
the speed of the function recognition process is to adopt a
path profiling algorithm [67] instead of RR [107]. Second, we
plan to develop an advanced mutation strategy that can handle
complex bugs spanning multiple locations or variables. The
current implementation of BENZENE cannot handle cases
such as 25 and 26 in Table 3 because those require mutating
multiple locations in a single mutation cycle. To tackle this
problem, we intend to allow BENZENE to modify multiple
variables based on user preferences.

11. Related work

Reverse Execution. Reverse execution enriches crash
analysis by facilitating the analysis of the execution flow
from a crash site [78], [79], [106], [120], [121]. It is common
to construct a data flow on top of a reverse execution.
POMP [121] proposes a backward taint analysis on both a
crash dump and a control-flow trace, followed by locating
a program statement that triggers a crash. POMP++ [106]
advances POMP by leveraging a value-set analysis [66] that

can refine data flow construction via the relation verification
of a memory alias. RETRACER [79] extracts program se-
mantics from a memory dump and performs a backward taint
analysis to find a certain function on the stack that triggers a
crash. REPT [78] presents an error correction mechanism to
conduct both forward and backward analyses iteratively on
a hardware-assisted execution trace and then restore the data
flow pertaining to a crash. Similarly, BENZENE reconstructs
a DFG for further RCA investigation.
Mutation-based Fuzzing. To improve the accuracy of
RCA, Miller et al. [101] harness a mutation-based fuzzing
technique for generating varying program inputs that trig-
ger an unexplored behavior. Mutation-based fuzzing is
largely categorized as either a symbolic-based [73], [85],
[86], [108], [115] or taint-based [81], [83], [95], [111],
[117] approach. Fuzzing leverages a symbolic execution
into various tasks including constraint solving [73], [85],
[86], program transformation [90], [108], and vulnerability
detection [122], [123]. Meanwhile, a taint analysis assists
fuzzing in finding interesting bytes with a mutation [83], [95],
[111], data dependency inference [81], and value type [76].
However, BENZENE adopts a novel approach, the under-
constrained state mutation for efficient RCA, because the
above techniques incur high performance overheads.
Statistical Fault Localization. Statistical fault localiza-
tion [118] assigns a score to each selected group for a
program element (e.g., statement, predicate) atop execution
traces, and has been utilized as the key technique for
RCA [65], [69], [91], [96], [97], [114], [127]. To improve
statistical fault localization, it is crucial to create appropriate
test cases by exploring as many distinct paths as possible
within a target program. For instance, AURORA [69] gener-
ates both crashing and non-crashing inputs with an existing
fuzzing technique (i.e., AFL crash exploration mode), and
so does VULNLOC [114] with directed fuzzing. However,
such approaches suffer from generating a valid test case that
requires a highly-structured syntax. KAIRUX [127] introduces
a technique that pinpoints the location of a root cause with
dynamic slicing when a sufficient number of unit tests and
crashing inputs are provided. However, BENZENE solely
requires a target program with a crashing input to generate
varying (valid) test cases.

12. Conclusion
We present BENZENE, a practical system for RCA that

can automatically identify problematic locations in a target
program when given a crash-inducing input. In contrast
to previous approaches, BENZENE can quickly identify
the root cause through novel techniques based on under-
constrained mutations. The system consists of three main
components: dynamic binary analysis, program behavior
exploration, and RCA. Our evaluation of 60 real-world
applications demonstrates the effectiveness and efficiency
of BENZENE. Compared with state-of-the-art approaches,
BENZENE accurately pinpoints the root cause location in
93.3% of samples. BENZENE is 4.6× faster and requires
31.4× less memory on average than prior approaches.
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Appendix A.
In-depth Analysis and Case Studies

A.1. AURORA Failure Analysis

With a careful analysis, we categorize three main reasons
of failure cases by AURORA as followings.

• Fuzzing Failure. The AFL’s crash exploration mode could
not find proper non-crashing behaviors for RCA within
6-hour time-limit, including 02 PHP-6977, 04 Poppler-
12293, 06 TinyCC-20375, and 26 Python-116286.

• Insufficient Non-crashing Behaviors. A majority of sam-
ples fall into this category where non-crashing behaviors
are unsatisfactory to discover a root cause candidate (i.e.,
within Top 50), including 01 PHP-8865 (2920), 03 mruby-
0525 (56), 05 SoX-11358 (3888), 07 mruby-46020 (270),
08 PHP-7226 (289), 09 PHP-0273 (124), 10 libical-
11706 (485), 11 SoX-8356 (264), 13 PHP-2386 (2175),
15 SQLite-16168 (606), 29 Xpdf (237), and 30 nm-21670
(365). Note that the numbers in a parenthesis represent
the predicate ranking of the root cause in a report.

• Unsupported Predicate Type. We found one sample that
fails RCA due to the lack of a predicate type: 50 abc2mtex-
1257 (strlen_geq).

A.2. ARCUS Failure Analysis

With a careful analysis, we categorize six main reasons
of failure cases for ARCUS as followings.

• Symbolic Execution Failure. A symbolic execution
engine ran over the 20-hour time-limit, which includes
12 mruby-181321 (36.3%), 14 Poppler-7310 (<0.01%),
31 mruby-10199 (1.11%), 36 Python-5636 (0.75%), and
38 mruby-10191 (19.8%) Note that the values in a paren-
thesis represent the progress (i.e., cur_trace_cnt

total_trace_cnt × 100) of
each reconstruction analysis after 20 hours.

• Crash in a Hook. The samples in this category encounter
a crash while hooking a function by angr because of trace
discrepancies between symbolic executions and PT traces,
including 56 libtiff-2025 and 57 libexif-2645.

• Unsupported External Libraries in a Symbolic En-
gine. Because the symbolic execution engine in angr
does not fully support external libraries like libc, an
execution within a library (i.e., following recorded Intel
PT-based traces) often leads an abort during a state
reconstruction step. The samples that fall into this category
include 32 Lua-6706 (angr reaches an unmapped region),
33 nasm-8343 (localtime()), 37 Bash (gethostname()),
and 46 dmitry-7938 (gethostbyname()).

• Constraint Solving-Failure. We found one sample that
fails to solve a complex constraint in a symbolic engine:
13 PHP-2386.

• Inadequate Rule. The RCA failure of the following two
samples arises from missing rules to discover a root cause,
which includes 34 Sleuthkit and 42 autotrace-9167.

• Failure in Resolving Dynamic Symbols. We found
the cases that fail to resolve the function address from
an external library during symbolic execution, including
16 SQLite-13434, 35 libzip-12858, 43 Redis-12326,
44 ftp-15705, 49 pdf-re-14267. 53 GM-11403, 54 GM-
14103, and 55 autotrace-9182.

A.3. Root Cause Predicate Discrepancies

Both BENZENE and AURORA produce a ranking report
with the candidate of a root cause predicate. In case of
even successful RCA with both approaches, we recognize
the discrepancies of root cause predicates. However, we
manually inspect that those root cause indicates semantically
fruitful information that can assist a developer for a bug fix.
For instance, in the case of 38 mruby-10191, both BENZENE
and AURORA pinpoint the predicate of [eax >= 0xfc]
and [min rdx >= 0xfd], respectively. Similarly, both report
[¬(esi <= 0x4de5fadb)] and [max r12 >= 0x80000011],
which indicates a large value when the root cause of
14 Poppler-7310 is an integer overflow. We hypothesize that
such discrepancies predominately arise from the reliance on
different (nondeterministic) mutation processes, approaches
(e.g., state mutation, predicate type), and implementations.

A.4. Case Studies

In this section, we deal with three case studies: two cases
that BENZENE can successfully pinpoint a root cause, and
one case (03 mruby-0525) that BENZENE is incapable of.
CVE-2016-5636. Figure 10 presents a heap overflow
vulnerability in get_data(), at the zipimporter module from
python 3.6. In a nutshell, the four-byte bytes_size variable
becomes 0x0 in line 7 due to an overflow when data_size
is incremented by one from 0xffffffff. As a consequence,
get_data() allocates a small amount of memory based on
the bytes_size in line 13, whereas the actual size of the data
is bigger than the allocation, resulting in an out-of-bound
write. The vulnerability has been patched by checking if
data_size exceeds a limit value. In this case, BENZENE
successfully pinpoints the root cause at the 5th predicate.
BENZENE targets varying functions for fuzzing, including
the culprit function, collecting a non-crashing behavior (e.g.,
data_size ̸= 0xffffffff), followed by computing a distance
score based on PCA.
CVE-2013-7226. Figure 11 displays a type confusion
vulnerability in imagecrop() from PHP 5.5.8. zval type in
line 6 represents an internal structure, which handles varying
variable types (e.g., IS_LONG defines an integer value). Here,
the absence of a type check on zval in Line 11 triggers
the vulnerability. To exemplify, a carefully crafted input can
have the tmp points to a string type (i.e., IS_STRING) zval,
while it is assumed to be an integer type (i.e., IS_LONG).
It subsequently makes rect.x wrongly contains a pointer,
which is a large value as an integer. Since gdImageCrop() in
Line 15 calls memcpy() with the rect.x as a source pointer,
a segmentation fault occurs due to a buffer over-read. The
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1 // Modules/zipimport.c:1061
2 static PyObject *
3 get_data (PyObject *archive, PyObject *toc_entry)
4 {
5 ...
6 // bytes_size: data_size(0xffffffff) + 1 -> overflow.
7 bytes_size = compress == 0 ? data_size : data_size + 1;
8 if (bytes_size == 0)
9 // bytes_size: 0x1

10 bytes_size++;
11

12 // raw_data: a buffer with size of bytes_size (0x1).
13 raw_data = PyBytes_FromStringAndSize(NULL, bytes_size);
14 ...
15

16 // buf points at 1-size buffer
17 buf = PyBytes_AsString(raw_data);
18 if (err == 0) {
19 // buf is 1-size but data_size is 0xffffffff.
20 // resulting in the Out-of-Bound write
21 bytes_read = fread(buf, 1, data_size, fp);
22 }
23 }

Figure 10: Code snippet for CVE-2016-5636. An out-of-bounds
write occurs (Line 21) due to the insufficient allocation size
overflowed by data_size + 1 (Line 7). We simplified the code
for brevity.

1 // ext/gd.c:4941
2 PHP_FUNCTION(imagecrop)
3 {
4 ...
5 gdRect rect;
6 zval **tmp;
7 if (zend_hash_find(HASH_OF(z_rect),
8 "x", sizeof("x"), (void **)&tmp) != FAILURE) {
9 // tmp points IS_STRING type zval,

10 // resulting in a type confusion bug
11 rect.x = Z_LVAL_PP(tmp);
12 }
13 ...
14 // Out-of-bound access occurs due to rect.x.
15 im_crop = gdImageCrop(im, &rect);
16 }

Figure 11: Code snippet for CVE-2013-7226. A type confusion
vulnerability in line 11 makes an integer variable rect.x contain a
pointer value, causing a segmentation fault during gdImageCrop()
in Line 15.

vulnerability has been patched by adding a type checking
routine in Line 11 (e.g., ensuring that zval contains IS_LONG).
In this case, BENZENE redirects tmp to point to zval of an
integer value through a mutation with BoV, obtaining a
(desirable) non-crashing behavior. Notably, a pure-random
mutation hardly discovers such a non-crash because tmp must
point to the valid zval structure.
CVE-2022-0525. Here we introduce a case that BENZENE
cannot handle, which is a heap overflow vulnerability in
gen_assignment() from mruby version 3.0.0. The vulnera-
bility occurs when the mruby compiler mishandles an internal
stack position (cur->sp) of interpreter while generating array-
related bytecodes. Due to its complexity, it requires two
consequent patches for this bug, which contains multiple root
causes. Although BENZENE fails to pinpoint the locations of
the original patches, it provides a meaningful insight about
a given crash. With an under-constrained state mutation,
BENZENE is able to find one of non-crashing behaviors

Target CVE/Issue Bug Type # of Instructions

01 PHP-8865 CVE-2015-8865 [39] Heap Overflow 9,809,095
02 PHP-6977 CVE-2019-6977 [41] Heap Overflow 12,491,703
03 mruby-0525 CVE-2022-0525 [26] Heap Overflow 3,134,273
04 Poppler-12293 CVE-2019-12293 [45] Heap Overflow 125,813,540
05 SoX-11358 CVE-2017-11358 [52] Heap Overflow 680,855
06 TinyCC-20375 CVE-2018-20375 [58] Heap Overflow 614,608
07 mruby-46020 CVE-2021-46020 [25] Null Dereference 2,243,674
08 PHP-7226 CVE-2013-7226 [42] Type Confusion 9,956,549
09 PHP-0273 CVE-2015-0273 [43] Type Confusion 9,516,412
10 libical-11706 CVE-2019-11706 [16] Type Confusion 3,975,381
11 SoX-8356 CVE-2019-8356 [53] Stack Overflow 141,771,429
12 mruby-181321 hackerone-181321 [29] Use After Free 13,497,624
13 PHP-2386 CVE-2012-2386 [40] Integer Overflow 9,285,250
14 Poppler-7310 CVE-2019-7310 [46] Integer Overflow 16,506,068
15 SQLite-13434 CVE-2020-13434 [54] Integer Overflow 1,331,697
16 SQLite-16168 CVE-2019-16168 [55] Division by Zero 1,338,307
17 libbfd-8393 CVE-2017-8393 [14] Global Overflow 539,511
18 readelf-9077 CVE-2019-9077 [49] Heap Overflow 671,011
19 objdump-9746 CVE-2017-9746 [36] Heap Overflow 6,411,352
20 tcpdump-16808 CVE-2017-16808 [57] Heap Overflow 1,138,487
21 perl-17384 Issue-17384 [38] Heap Overflow 1,314,300
22 patch-54558 Issue-54558 [10] Heap Overflow 317,534
23 mruby-12248 CVE-2018-12248 [23] Heap Overflow 17,393,851
24 nasm-16517 CVE-2018-16517 [31] Null Dereference 955,041
25 mruby-185041 hackerone-185041 [27] Type Confusion 13,420,945
26 Python-116286 hackerone-116286 [48] Type Confusion 44,778,829
27 mruby-3947 Issue-3947 [28] Uninitialized Var. 25,646,156
28 PHP-11038 CVE-2019-11038 [44] Uninitialized Var. 11,683,900
29 Xpdf N/A [60] Uninitialized Var. 7,245,661
30 nm-21670 Issue-21670 [33] Stack Overflow 515,784
31 mruby-10199 CVE-2018-10199 [30] Use After Free 17,191,784
32 Lua-6706 CVE-2019-6706 [21] Use After Free 960,676
33 nasm-8343 CVE-2019-8343 [32] Use After Free 962,302
34 Sleuthkit N/A [51] Double Free 2,463,131
35 libzip-12858 CVE-2017-12858 [20] Double Free 352,871
36 Python-5636 CVE-2016-5636 [47] Integer Overflow 105,414,833
37 bash N/A [6] Integer Overflow 1,423,765
38 mruby-10191 CVE-2018-10191 [24] Integer Overflow 28,965,409
39 libpng-0597 CVE-2004-0597 [18] Heap Overflow 266,061
40 jpegtoavi-1279 CVE-2004-1279 [13] Heap Overflow 332,757
41 o3read-1288 CVE-2004-1288 [35] Heap Overflow 258,545
42 autotrace-9167 CVE-2017-9167 [3] Heap Overflow 1,239,089
43 Redis-12326 CVE-2018-12326 [50] Heap Overflow 1,164,556
44 ftp-15705 EDB-15705 [9] Heap Overflow 478,490
45 gif2png-5018 CVE-2009-5018 [8] Stack Overflow 308,479
46 dmitry-7938 CVE-2017-7938 [7] Stack Overflow 537,600
47 ntpq-12327 CVE-2018-12327 [34] Stack Overflow 1,195,848
48 libiec-18957 CVE-2018-18957 [17] Stack Overflow 237,628
49 pdf-re-14267 CVE-2019-14267 [37] Stack Overflow 1,888,476
50 abc2mtex-1257 CVE-2004-1257 [2] Stack Overflow 266,245
51 abc2mtex-47254 EDB-47254 [1] Stack Overflow 233,802
52 MiniFtp-46807 EDB-46807 [22] Stack Overflow 274,528
53 GM-11403 CVE-2017-11403 [12] Use After Free 1,289,365
54 GM-14103 CVE-2017-14103 [11] Use After Free 7,534,186
55 autotrace-9182 CVE-2017-9182 [5] Use After Free 190,298,343
56 libtiff-2025 CVE-2006-2025 [19] Integer Overflow 462,148
57 libexif-2645 CVE-2007-2645 [15] Integer Overflow 289,887
58 autotrace-9186 CVE-2017-9186 [4] Integer Overflow 1,241,386
59 typespeed-0105 CVE-2005-0105 [59] Format String 474,589
60 sudo-0809 CVE-2012-0809 [56] Format String 1,005,898

TABLE 5: Evaluation dataset. We newly add 17 samples (1−17),
employ 21 samples (18−38) from AURORA, and 22 samples
(39−60) from ARCUS.

from the target function (gen_hash()) by modifying a stack-
relevant variable (cur->sp). Although it differs from the
patched locations, this implies that a stack position value in
mruby has a possible root cause of the crash.

A.5. Evaluation Dataset

Table 5 presents our evaluation dataset in detail, including
a CVE or issue number, bug type, and the number of
exercised instructions to reach a vulnerability.
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Appendix B.
Meta-Review

B.1. Summary

This paper presents BENZENE, a novel approach for
conducting root cause analysis for crashes that are caused
by vulnerabilities. BENZENE is built upon a new technique,
underconstrained state mutation, that is able to generate
both crashing and non-crashing behavior to assist with root
cause analysis. The authors evaluated BENZENE with 60
vulnerabilities showing that the root cause can be identified
for 93.3% of samples and that BENZENE is superior to
existing state-of-the-art approaches with regards to speed
and memory footprint.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) Finding non-crashing behavior close to crashing behav-
ior is a fundamental challenge to applying statistical root
cause analysis in the real world. This paper mitigates
this long-known issue by proposing the state mutation
technique.

2) BENZENE is a valuable step forward in an established
field, namely root cause analysis. BENZENE is based on
a novel technique, underconstrained state mutation, to
generate crashing and non-crashing behaviors which are
used to determine the root cause for program failure.

3) The paper creates a new tool to enable future science.
The authors have made BENZENE open-source to pro-
mote the use of automated root cause analysis in the
future.
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